Anaesthesia for non-cardiac surgery in patients left ventricular outflow tract obstruction (LVOTO)

Dr. Siân Jaggar
Consultant Anaesthetist
Royal Brompton Hospital
London
UK Congenital Cardiac Services

- RBH largest congenital cardiac unit worldwide (2 sites)
- > 20% UK workload
- Surgery at Brompton
LVOTO & Anaesthesia

• Why does it matter?
• What is it?
 – Fixed / Dynamic
• Anaesthetic management
 – Pre-op
 – Per-op
Why does LVOTO matter?

- Common
- ↑ed LV afterload → LV hypertrophy
- Untreated results in LV dilatation & failure
- High risk infective endocarditis

- Anaesthesia → ↑ed risk
- ∴ recognise prior to anaesthesia
Range of disease

- Supra-valvular (F)
- Valvular (F)
- Sub-valvular
 - Fibro-muscular ridge or tunnel (F)
 - Hypertrophic cardiomyopathy (D)
Supra-valvular obstruction

• +/- Obstruction in multiple vessels
 – Including pulmonary vessels
• Particular risk in:
 – Williams syndrome
 – Rubella syndrome
• AV adhesion to sino-tubular junction \rightarrow restricted coronary filling (esp. LCA)
Valvular obstruction

• Congenital
 – Bicuspid valve
 – 1-2% population
 – ♂ : ♀ (4:1)
 – Autosomal dominant, variable penetrance
 – +/- CoA Ao

• Acquired
 – Most common valvular disease in elderly
Effects of fixed obstruction

- Concentric hypertrophy
- CO heavily rate dependent
- (LV dilatation)
- Inadequate systemic perfusion
- Pulmonary oedema
 - Exacerbated with MV regurgitation
- 1-2% mortality with non-cardiac surgery (if severe)
Anaesthesia with fixed obstruction

• Ensure effective LV pre-load – avoid:
 – Dehydration \rightarrow ↓filing vol.
 – Tachycardia / arrhythmia \rightarrow ↓filing time
 – (Excess ↑LAP \rightarrow pulmonary oedema)

• Maintain coronary perfusion – avoid:
 – Tachycardia / arrhythmia \rightarrow ↓coronary flow time
 – ↓SVR (systemic vascular resistance) \rightarrow ↓Ao root P

• Remember prophylaxis for endocarditis

Arterial & central venous lines may be helpful
Sub-valvular obstruction

Fixed
- Associated with other congenital conditions
 - ~40% have VSD
- Progressive, with ↑ing:
 - Obstruction
 - Regurgitation
- Discrete ridge (~90%)
- Fibromuscular tunnel

Dynamic
- Hypertrophic cardiomyopathy (HCM)
- Degree of obstruction varies acutely
 - Exercise
 - Emotion
 - Catecholamines
 - Unknown
Hypertrophic Cardiomyopathy

- Genetic condition (multiple genes involved)
 - ~90% inherited (autosomal dominant)
 - Most common inherited heart defect (1:500)
- LV hypertrophy disproportionate to the load
 - Stiff LV wall with impaired filling
 - ~40% have LVOTO at rest
 - In a further 33% LVOTO can be provoked

Maron, M.S. et al Circulation 2006, 114 (21), 2232-9
Clinical symptoms of HCM

- Nil
- May only be provoked by exercise:
 - Dyspnoea
 - Syncope
 - Angina
 - Arrhythmias
- Sudden death most common in young
- Hypertrophic Cardiomyopathy Association (HCMA)
 - Provides information for medical staff & families
 - http://www.4hcm.org/
Obstruction in HCM

- Not affect all individuals
- Mainly sub-aortic
 - Systolic anterior motion of mitral valve (SAM)
 - Mid-systolic contact between mitral valve & septum

- Diagnose with gradient ≥ 30mmHg
 - Obstructive at rest
 - With provocation

Maron, B.J. et al JACC 2009, 54 (3), 191-200
Risk of sudden death in HCM

Major risk factors:
- Previous cardiac arrest
- Spontaneous, sustained runs of VT
- Family history
- Unexplained syncope
- LV thickness > 30mm
- AbN BP with exercise

Potential risk factors:
- AF
- Ischaemia
- LVOTO
- High risk mutations
- (Intense exercise)
Avoiding sudden death in HCM

- Institute pre-emptive treatment if ≥ 2 major risks
 - FH HCM
 - Previous arrest
 - VT
 - Unexplained syncope
 - LV thickness ≥ 30mm
 - AbN BP response

More risk factors → greater likelihood death
Clinical signs of HCM

- Nil
- Rapid up- & down-stroke of arterial pulse
- Prominent jugular vein
- Systolic murmur at left sternal edge
 - ↑s with ↓blood in LV (e.g. Valsalva)
- ↓ (or no ↑) BP with exercise
Optimum treatment of HCM

Drug Treatment:
- Symptoms of failure:
 - \(\beta \)-blockers
 - \(Ca^{2+} \) channel blockers
 - Disopyramide
- Arrhythmia prevention:
 - \(\beta \)-blockers
 - Amiodarone
 - \(\omega \) ? need anti-coagulation

Interventions:
- Myomectomy
 - Surgical
 - Alcohol septal ablation
- Consider AICD

ACC/ESC consensus document 2003 (JACC)
Anaesthesia & dynamic obstruction

Avoid:
- ↑ dynamic obstruction
 - Dehydration (empty LV cavity)
 - +ve inotropes
- ↓ ΔP coronary perfusion
 - ↓ diastolic pressure
 - ↑ LV wall pressure (+ve inotropes)
- ↓ coronary perfusion time
 - +ve chronotropes
- Arrhythmias
 - Metabolic derangement (K⁺, Mg²⁺)
 - Excess LA dilatation
Anaesthesia with LVOTO

Summary

• LVOTO may be congenital or acquired
 – Always take a family history

• Obstruction may be fixed or dynamic

• If fixed, avoid:
 – Dehydration, tachycardia & ↓SVR

• If dynamic, avoid:
 – Dehydration, tachycardia, ↓SVR & +ve inotropes