

PRE Operative Care of the High Risk Surgical Patient

Dr A T Dewhurst Consultant Anaesthetist St George's Hospital London

Perioperative Optimization

Shoemaker oxygen delivery goal directed therapy

ITS NOT JUST ALL ABOUT

Maximising

DO2

best available evidence

European Heart Journal (2009) 30, 2769-2812 doi:10.1093/eurheartj/ehp337

Guidelines for pre-operative cardiac risk assessment and perioperative cardiac management in non-cardiac surgery

The Task Force for Preoperative Cardiac Risk Assessment and Perioperative Cardiac Management in Non-cardiac Surgery of the European Society of Cardiology (ESC) and endorsed by the European Society of Anaesthesiology (ESA)

Authors/Task Force Members: Don Poldermans; (Chairperson) (The Netherlands)*; Jeroen J. Bax (The Netherlands); Eric Boersma (The Netherlands); Stefan De Hert (The Netherlands); Erik Eeckhout (Switzerland); Gerry Fowkes (UK); Bulent Gorenek (Turkey); Michael G. Hennerici (Germany); Bernard Iung (France); Malte Kelm (Germany); Keld Per Kjeldsen (Denmark); Steen Dalby Kristensen (Denmark); Jose Lopez-Sendon (Spain); Paolo Pelosi (Italy); François Philippe (France); Luc Pierard (Belgium); Piotr Ponikowski (Poland); Jean-Paul Schmid (Switzerland); Olav F.M. Sellevold (Norway); Rosa Sicari (Italy); Greet Van den Berghe (Belgium); Frank Vermassen (Belgium) Incidence in Europe of complication following major non-cardiac surgery

- Cardiac death 0.5-1.5%
- Major cardiac complication 2-3.5%
- EU population 490 million, 7 million high risk procedures per annum
- 150,000 to 250,000 life threatening cardiac complications in EU per annum

High Risk Case

- Condition of patient
- Co-morbidities
- Magnitude and Duration of surgery
- Non cardiac complications
- Cardiac complication
 - Chronic mismatch myocardial supply/demand
 - Acute plaque rupture
 - LV failure

Surgical factors body cavity surgery/vascular surgery

- Changes core temperature
- Blood loss
- Fluid shifts
- Stress response
 - Hypertension
 - tachycardiac
- Prothrombotic

Surgical Mortality

Patient Selection

Shoemaker et al Crit Care Med 1982: 10; 398. Shoemaker et al Am J Surg 1983: 1; 43. Shoemaker et al Chest 1988: 94; 1176.

Shoemaker in a series of observational studies demonstrated a group of patients that he called "High Risk" and who had a 28 day mortality of 30-40%.

Shoemaker Used Simple Clinical Criteria to Identify These Patients

- Previous severe cardio-respiratory illness
- Late stage vascular disease
- Age> 70 with limited physiological reserve
- Acute abdominal catastrophe
- Septicaemia
- Respiratory failure
- Acute renal failure
- Massive blood loss > 8 units
- Extensive surgery for carcinoma

Risk Indices for Cardiac Events

- Goldman (1977), Detsky (1986) and Lee
 (1999)
 Lee Index
- 1. IHD
- 2. Heart failure
- 3. Stroke or Transient ischaemic attack
- 4. Diabetes requiring insulin
- 5. Renal dysfunction
- 6. High Risk surgery

Index	Risk
> 3	11%

Type and Timing of Surgery

Routine

Urgent

Emergency

Day

Damage Control surgery

CEPOD list

Night

Surgical Mortality

- Mella BJS 98
- Colorectal surgery audit
- Operations carried out urgently have a higher mortality rate

Type of Operation

Low-risk < 1%	Intermediate-risk 1–5%	High-risk >5%
Breast Dental Endocrine Eye Gynaecology Reconstructive Orthopaedic—minor (knee surgery) Urologic—minor	 Abdominal Carotid Peripheral arterial angioplesty Endovascular aneurysm repair Head and neck surgery Neurological/ orthopaedic—major (hip and spine surgery) Pulmonary renal/ liver transplarx Utologic—major 	 Aortic and major vascular surgery Peripheral vascular surgery

"Risk of MI and cardiac death within 30 days after surgery.

Preoperative assessment

- High risk patient are clinical priority
- Good communication between surgical and anaesthetic teams required
- Limited time available
- Balance between optimising medical conditions and need for surgery

Base Line Investigations

- Full blood count
- Urea and Electrolytes
- Coagulation screen
- Blood Glucose
- ECG
- Chest X-ray

Other Investigations

- Echocardiography in patients with heart failure or murmur
- Significant valvular lesions and impaired LV consider invasive monitoring + HDU

Non-invasive testing IHD

- Is there time available?
- Exercise tolerance test (ETT)
- Myocardial Perfusion Imaging (MPI)
- Stress Echocardiography
- CT or MRI
- Angiography
- CPET

ETT

- Sensitivity 74%, Specificity 69%
- Not suitable for patients who cannot reach ischaemic threshold

Radioisotopes scan

- Dobutamine
- Dipyridamole, Adenosine
- Look for
 - Reversible defects
 - Fixed defects

Meta-analysis MPI (1)

9 studies vascular surgery, end points cardiac death or MI, n 1179, 7% event rate

% LV reversible ischaemia	Lightlihood ratio of ischaemic event
< 20%	No difference
20-29%	1.6
30-49%	2.9
>50%	11

Etchells J Vasc Surg 2002;**36**:534-540

Stress Echocardiography

- Sensitivity 85%, Specificty 70% for cardiac death and MI
- Negative predictive value 90-100% (-ve test means safe)
- Positive predictive value 25-45% (+ve test does not Pedict post op cardiac event)

Angiography

- Rarely indicated to assess risk and may cause delay
- However is indicated in STEMI/NSTEMI and unstable angina if surgery can be delayed

Respiratory Assessment

- COPD increases risk x 3 of pulmonary complications
- Arterial Blood Gas
- Pulmonary Function Test
 - FEV1 < 70%
 - FEV1/FVC < 0.65

Optimisation

- Identify factors that can be optimised in time frame available
- Specialist input
- Pharmacological optimisation
- Medical optimisation
- Physiological optimisation

Pharmacological optimisation

- B-blockers continue established therapy, complex guidelines, POISE
- Statins continue (7.5-fold increased risk of death if stopped)
- Aspirin consider continuing
- ACE inhibitors consider continuing
- Diuretics for hypertension hold, for LVF continue

Recommendations on β-blockers ^a				
	Recommendations	C lass ^b	Level	
	β-Blockers are recommended in patients who have known IHD or myocardial ischaemia according to pre-operative stress testing ^a	I	В	
	β-Blockers are recommended in patients scheduled for high-risk surgery ^a	I.	В	
	Continuation of β-blockers is recommended in patients previously treated with β-blockers because of IHD, arrhythmias, or hypertension	I	С	
	β-Blockers should be considered for patients scheduled for intermediate-risk surgery ^a	lla	В	
	Continuation in patients previously treated with β-blockers because of chronic heart failure with systolic dysfunction should be considered	lla	С	
	β-Blockers may be considered in patients scheduled for low-risk surgery with risk factor(s)	llb	В	
	Perioperative high-dose β-blockers without titration are not recommended	III	А	
	β-Blockers are not recommended in patients scheduled for low-risk surgery without risk factors	III	В	

Active Cardiac Conditions

- Unstable coronary syndromes
 - MI within 30d
 - Angina class III or IV
- Decompensated heart failure
- Severe valve disease
- Significant arrhythmias

Surgery following PCI

Atrial Fibrillation

- Rate control 80-100
- Consider TOE to exclude thrombus and cardioversion if acute

onset

Other Arrhythmias

- SVT/AF
- VPB/non-sustained VT
- SMVT
- SPVT
- Torsades-de-Pointes

Aortic Stenosis

- Severe AS < 1cm²
 risk of MI and
 death □
- Urgent surgery performed with invasive monitoring
- Non urgent surgery delay consider Tx AS

C Kertai Am J Med 2004; 116:8-13

Other Valve Disease

- MS symptomatic patients with PHT > 50mmHg high risk
- AR/MR symptomatic patients with LV EF < 30% high risk
- Prosthetic valves antibiotics and anticoagulants

Renal Disease

- eGFR < 60mls/min at risk
- Oral intake
- IVI fluids 1ml/kg/hr
- Vasopressor
- Diuretics
- Dopamine
- N-acetylcysteine (contrast nephropathy)

Other issues

- Diabetes
- Pulmonary disease
- Metabolic derangement
- Pain
- Monitoring
- Anaesthetic

Preoperative Haemodynamic Optimisation or EGDT

- Multiple studies of varying quality
- Seem to make a difference in outcome in sick patients undergoing high risk surgery if started early
- Use flow monitoring to direct fluids and inotropes

I will discuss this topic in more depth at workshop on friday

Meta-analysis

Comparison: 01 Al	ll Studies					
Study	ortainy Treatment n/N	Control n/N	Peto OR (95%Cl Fixed	Weight) %	t Peto OR (95%Cl Fixed)	
Shoemaker 1988	1/28	18/60	<u> </u>	17.5	0.21[0.07.0.63]	
Berlauk 1991	1/68	2/21 —		2.8	0.09[0.01,1.29]	
Boyd 1993	3/53	12/54	— G —	17.5	0.26[0.09,0.76]	
Mythen 1995	0/30	1/30 —		1.3	0.14[0.00,6.82]	
Sinclair 1997	1 / 20	2/20		3.8	0.50[0.05,5.06]	
Ziegler 1997	3/32	2/40	_	6.3	1.95[0.32,11.98]	
Bender 1997	1 / 51	1/53		- 2.7	1.04[0.06,16.86]	
Valentine 1998	3/60	1/60	_	- 5.2	2.79[0.38,20.31]	
Ueno 1998	0/16	2/18 —	e	2.6	0.14[0.01.2.39]	
Wilson 1999	3/92	8/46		12.2	0.15[0.04.0.54]	
Lobo 2000	3/19	9/18	_ -	11.2	0.22[0.06.0.85]	
Polonen 2000	4/196	9/197	-8-	16.9	0.45[0.15,1.37]	
Total(95%Cl)	23 / 665	67/617	•	100.0	0.33[0.21,0.51]	
Chi-square 13.33 (df=11) P: 0.35 Z=-4.84 P: <0.000	101				
		.001 . Favours t	02 1 rreatment F	50 1000 avours control		
	All studies	Treatment	Control	Peto	Р	
	Mortality			OR		
		23/665	67/617	0.33	∢0.0001	Grocott M. et al.
		3.5%	10.9%	0.00	·0.0001	2003

