Diagnosing infection in the ICU.

A new dawn?

Kyiv 2016

Dr David Brealey
University College Hospital
London, UK

Infection and Sepsis

- It's a bit of a problem and we don't seem to be doing very well
 - Incidence is increasing
 - No new interventions since antibiotics
 - Rise in multi-drug resistant bacteria
- ► To manage a condition we need to know what to treat

Everything starts with the definition

- Sepsis is an ancient Greek term
- It means 'decomposition'
- ...and they described it perfectly:
 - ► 'A local lesion, heated by humor afflux, makes the whole body become feverish. One can die because of this....'
 - 'A darkening and a faster sedimentation of the form component of blood'

So lets imagine.....

Feverish, tachycardic and unwell

What you do about it depends a little in which century you live

Two golden ages of sepsis

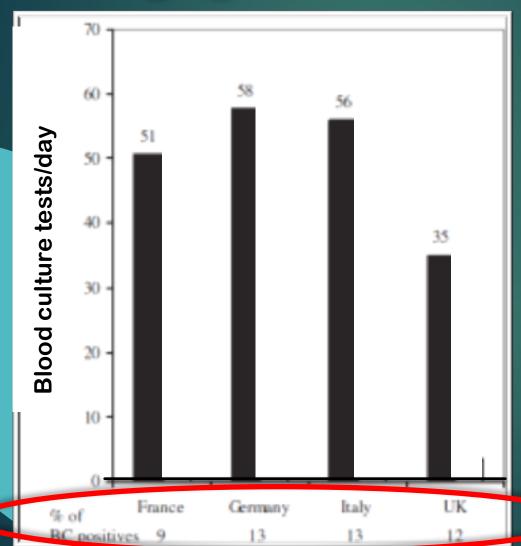
14th Century

- Make an assumption they are septic (Greek definition)
- Put to bed and wash with vinegar
- Blood letting
- Eat bread, fruit and veg
- ► Try
 - ▶ Tie a hen around their waist
 - Drink their urine
 - Warm treacle and beer

21st Century

- Make an assumption they are septic (give antibiotics)
- Put to bed and wash with chlorhexidine
- ► Tolerate a Hb>60g/l
- Start early nutrition
- ▼ Try
 - Activated Protein C
 - ► Talactoferrin (breast milk)
 - Steroids

What has changed?


- The clinical definition of sepsis in ancient Greece or Kyiv today:
 - ► Is highly non-specific
 - ▶ Does not isolate when the septic process started
 - Let alone what is causing it
- Our understanding has improved markedly
 - Mitochondria
 - Reactive oxygen/nitrogen species
 - ▶ Cell death etc etc
- But still held back by diagnostic uncertainty

Not Rapid Pathogen Detection

The yield from blood cultures are negligible

Schmitz et al. Critical Care 2013, 17:R248
http://ccforum.com/content/17/5/R248

RESEARCH

Open Access

Quality of blood culture testing - a survey in intensive care units and microbiological laboratories across four European countries

Roland PH Schmitz 12t, Peter M Keller 14t, Michael Baier 3, Stefan Hagel 5t, Mathias W Pletz 5t and Frank M Brunkhost 12:207

When we are sure...we are not

- ARISE: 1600 patients with severe sepsis, 38% cultures were positive
- PROCESS: 1351 patients with severe sepsis, 31% cultures were positive
- ProMISe: 1260 patients with severe sepsis, 56% able to identify a pathogen
- SOAP study (observational European study): 1177 patients with infection, 468 had a pathogen identified (39%)
- Canada/US: 2,731 patients with Septic Shock 37% had positive blood cultures (Kumar Crit Care Med 2006)

So why is that?

- Often prior use of antibiotic
- Viral aetiology
- Inappropriate culture technique
- Fragile organisms (e.g. pneumococcus)
- ▶ Patient is not septic!
- Sensitivity of blood culture is approximately 40% (specificity ~95%)

They make no difference

- 414 patients in ED with pneumonia
- Blood cultures taken and antibiotics started
- 7% blood cultures positive (26/414)
- ▶ Of those 26:
- ▶ 11/26 continue empiric therapy, though 8 could de-escalate
- ► 11/26 de-escalate
- 4/26 broaden therapy

They make no difference

- ► 760 patients with community pneumonia, all had blood cultures
- ▶ 43 (5.7%) were positive
- Culture suggested a step down in antibiotics in 17
- Of those 17 only 6 followed the recommended course of action

No other area tolerates this level of imperfection

- Cardiologists would not stent all with chest pain
 - ► High sensitivity Troponin T 90% sensitivity with baseline
 - ► ST elevation on ECG 88-98% specific
- Stroke doctors would not thrombolyse everyone with a weak arm
- Oncologists would not give 'chemotherapy' to everyone with a mass on CT
- Why should we give antibiotics to everyone who may just be septic?

Perhaps because...

A retrospective cohort analysis of **760** patients with severe sepsis*

31% received inappropriate antibiotic treatment

In 58%, therapy was delayed

42% had resistance to the antibiotic administered

Patients who progress to septic shock have a 7.6% increase in mortality every hour while not on appropriate therapy**

^{*} Shorr AF et al. *Crit Care Med*. 2011;39(1):46-51. *Kumar A et al. *Crit Care Med*. 2006;34(6):1589-1596.

How big a problem is empiric prescribing?

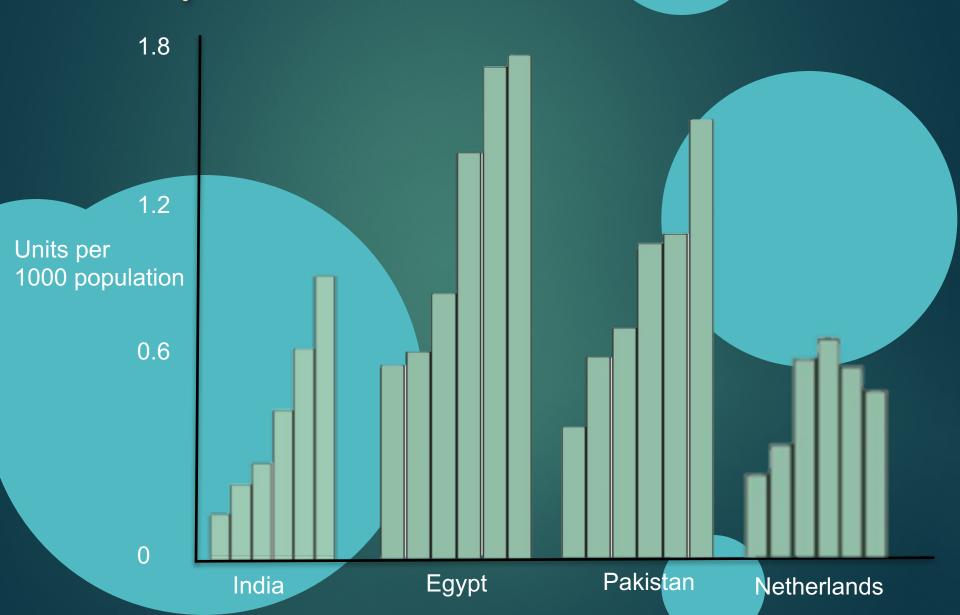
- Pneumonias comprise the largest single group (22.8%) of all hospitalacquired infections in UK.
- Standard empiric treatment is piptazobactam or carbapenems
- Look at organism ID and susceptibility and these drugs achieve 85-86% coverage
- But 49% of pathogens could have been covered by amoxicillinclavulanate and 27% by ampicillin or amoxicillin.
- Thus, empirical piperacillin-tazobactam or imipenem amounts to under treatment in 14-15% of cases and over-treatment in 27-49%.

Not just the UK

- ► European study of 3,147 ICU admissions identified an infection (clinically or microbiologically defined) in 37%
 - ▶ 64% received an antibiotic
 - In an Israeli teaching hospital infection could only be defined in 54% of cases where antibiotics were being used
 - Length of antibiotic course was the same if infection was defined (11.5 days) or undefined (10.7 days)
 - Even when clinician certainty was low, antibiotics continued
 - 658 antibiotic days could have been saved in the 4 month study period

SOAP Study. Crit Care Med 2006 Levin et al J. Hosp Med 2012

So what's the big deal?

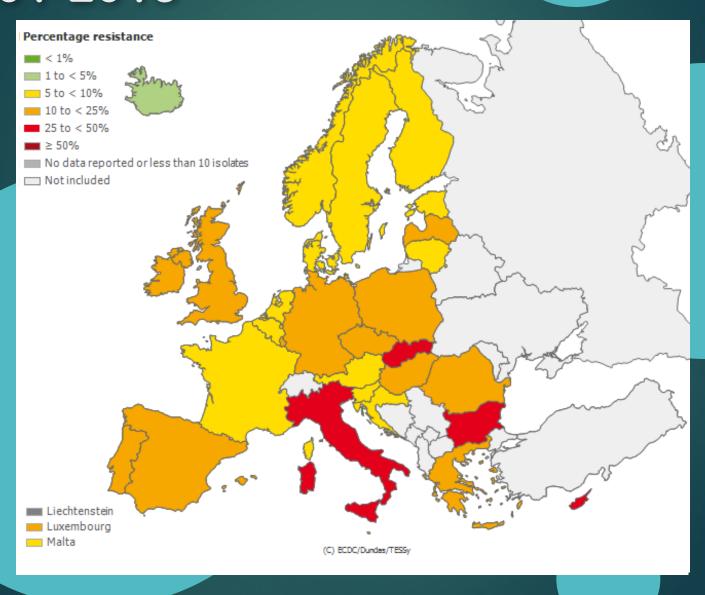

Quite a lot really...

- Simple diarrhoea, rash etc
- Drug induced nephritis and cholestatic liver impairment
- Mitochondrial impairment potentiating organ dysfunction
- Destruction of gut flora (C.difficile infection)
- Anaphylactic reactions
- Pressure on bacteria to develop drug resistance

Antibiotic resistance

- The liberal use of broad spectrum antibiotics is leading to a rapid rise of highly resistant bacteria across the World
- Ultimately one of the biggest challenges to healthcare in the coming decades

Meropenem sales 2005-2010



UK from 2010-2013


46% rise in piptazobactam use

37% rise in meropenem use

E.Coli resistance to cephalosporins 2001-2013

Alexis Tabah Despoina Koulenti Kevin Laupland Benoit Misset Jordi Valles Frederico Bruzzi de Carvalho José Artur Paiva Characteristics and determinants of outcome of hospital-acquired bloodstream infections in intensive care units: the EUROBACT International Cohort Study

Cost of multi-resistant bacteria

...developing new antibiotics will not address this growing problem

There seems to be a conflict...

Drive to spot and treat sepsis

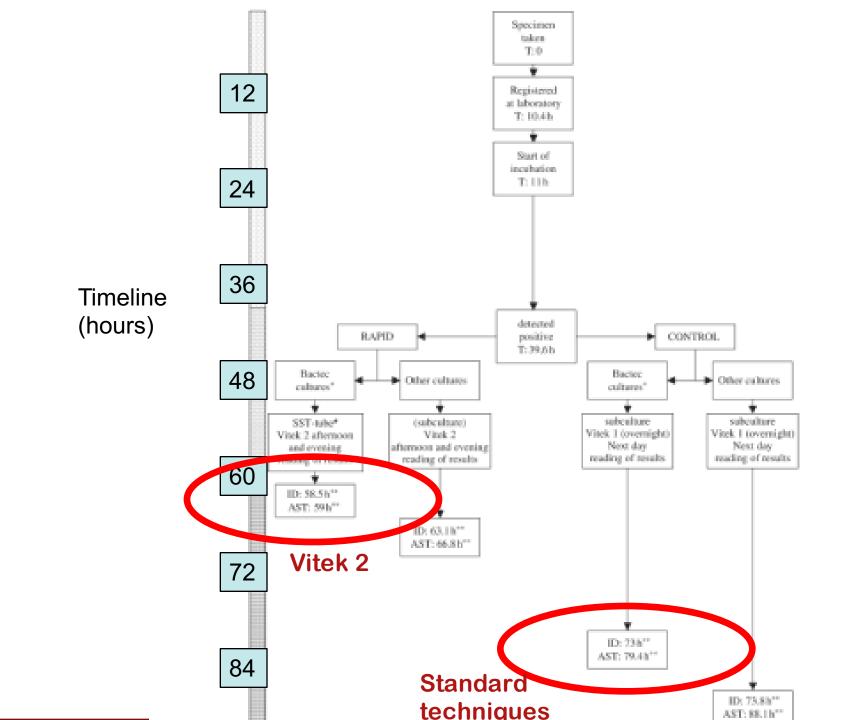
Drive to control antibiotic misuse

Vs

We desperately need to...

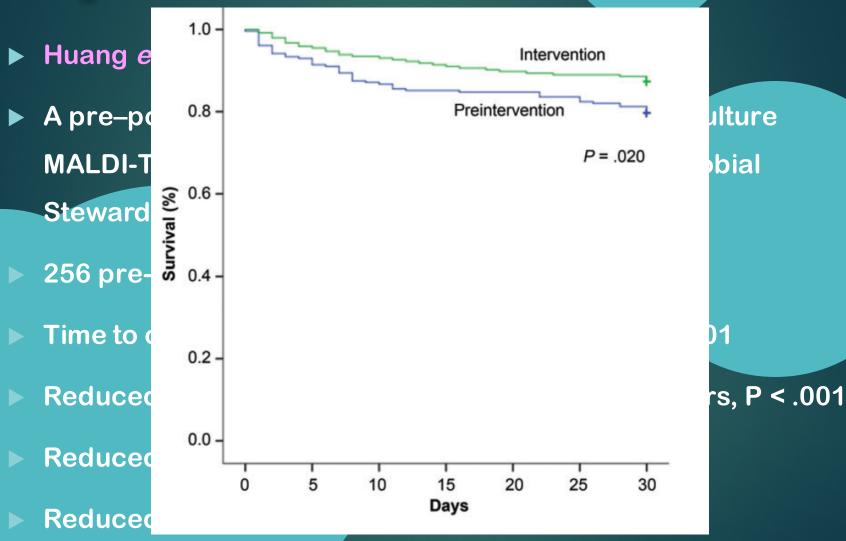
- Identify the pathogen faster and more reliably than you (or Sir Alexander Flemming) can
- Identify the inflammatory response is to an infection
 - Currently best markers are pro-calcitonin or C-reactive protein
 - ▶ Both are rubbish
- Field is now changing very fast indeed

Where are we now?



- Pre-culture techniques
 - ► Iridica, SeptiFast, T2 Biosystems
 - ► Able to deliver results within a few hours
 - New and currently not very common (at least no

Any evidence?


- Kerremans et al J.Antimicrob Chemother 2008
- Prospective RCT of 1498 patients with positive culture from sterile compartments
- Rapid pathogen detection (Vitek2) vs standard culture
- Intervention group
 - Identification reduced by 13h and 20h for susceptibility testing (P<0.001)</p>
 - Lower DDD of antibiotics.
 - No difference length of stay and mortality
- However, large number of protocol violations (~15%)

Any evidence?

- Galar et al J Infec 2012.
- 290 patients with positive culture guided by the results from Vitek 2
- Compared to 284 historical controls (bit of a flaw!)
- Vitek 2 led to:
 - ► Reduced Time to ID and sensitivities 9.4 h (±1.2) vs 27.0 h (± 9.1) for the(P < 0.001)
 - ► Time result received within 48hr of culture of specimen: 81% vs 52%
 - Reduced time in ward 7.7 ± 14.6 vs 10.1 days ± 16.3 p=0.003
 - ► Decreased need for intubation 7.9% vs 14.4% p=0.017
 - Decreased number of investigations
 - Decreased cost s €12,402 vs €15,990

Any evidence?

Having said that

- All these studies have fairly major methodological flaws
- Had to rely an organism being cultured
- ► All had fairly long time to ID an organism and effect treatment
- But all showed some sort of benefit we would like to see and perhaps a taster of what is possible

What about pre-culture techniques?

- Promise of much faster turns around times
- ► Panels including bacteria, fungi or viruses
- Unaffected by antibiotics
- Impressive observational trials
- Concerns that DNA does not equal infection:
 - Dead bacteria
 - **DNA Translocation**

IRIDICA

- New PCR/ESI MS developed by Abbott
- Can detect over 1,200 pathogens
 - Bacteria
 - Viruses
 - Fungi
- Limited, but expanding resistance profile
- Direct from blood, BAL, CSF etc
- Result within 6-8 hours

IRIDICA

Does it work?

The RADICAL Study

Rapid Diagnosis of Infection in the Critically III, a Multicenter Study of Molecular Detection in Bloodstream Infections, Pneumonia, and Sterile Site Infections

Jean-Louis Vincent, MD, PhD, FCCM¹; David Brealey, MD²; Nicolas Libert, MD³; Nour Elhouda Abidi, MD⁴; Michael OʻDwyer, MD⁵; Kai Zacharowski, MD⁶; Malgorzata Mikaszewska-Sokolewicz, MD⁷; Jacques Schrenzel, MD⁶; François Simon, MD⁶; Mark Wilks, PhD⁵; Marcus Picard-Maureau, PhD¹⁰; Donald B. Chalfin, MD, MPH¹¹; David J. Ecker, PhD¹¹; Rangarajan Sampath, PhD¹¹; Mervyn Singer, MD²; the Rapid Diagnosis of Infections in the Critically Ill Team

Methodology

- ► To compare the performance of PCR/ESI-MS with standard hospital culture techniques
- A pragmatic prospective, observational trial
- Patient population: Any adult patient under the care of the critical care team being investigated for potential sepsis

Of the 625 blood samples...

	Culture	PCR/ESI-
		MS
Positive (68 (11%)	228 (36%)
Negative	557 (89%)	397 (64%)

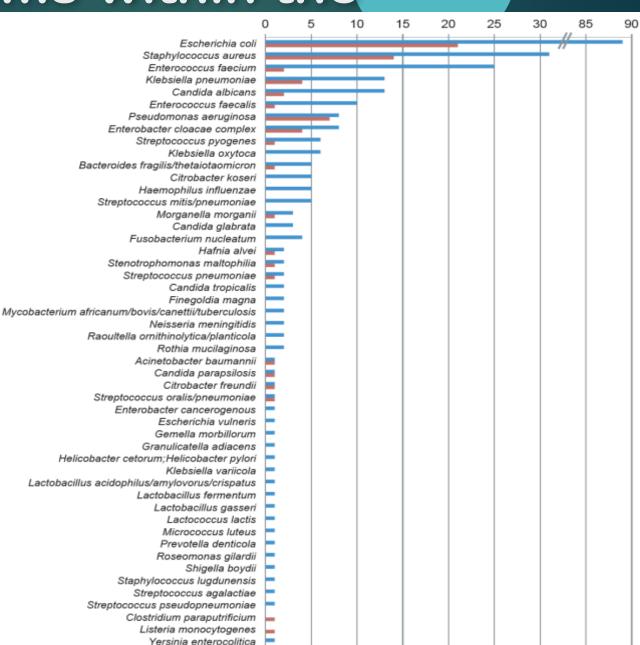
- PCR/ESI-MS has a yield 3x that of culture
- Positive blood culture rate similar to literature

Of the 625 blood cultures...

		Culture	
Performance		Positive	Negative
PCR/ESI	Positive	55 (9%)	173 (28%)
-MS	Negative	13 (2%)	384 (61%)

- Negative predictive value: 97%
- Positive predictive value: 24%
- Sensitivity: 81% Specificity: 69%

A little caution...


- Sensitivity and specificity are about comparing to a gold standard
- Blood cultures are standard but they are not golden
- This is a recurrent problem as we start to replace old biomarkers and definitions
 - ▶ Creatinine renal failure
 - Chest x-ray pneumonia
 - ► CRP sepsis diagnostics

Perhaps its picking up irrelevant DNA?

Organisms within the

blood

Iridica
Culture

Organisms within the blood

Replicate sampling

- ▶ 169 had replicate blood sampling (e.g. 2 venepunctures)
 - ► PCR/ESI-MS concordance in 83%
 - Culture concordance in 55%
- ▶ 151 had sampling from 2 sites (e.g. respiratory & blood)
 - ► PCR/ESI-MS Concordance in 57%
 - Culture concordance in 12%

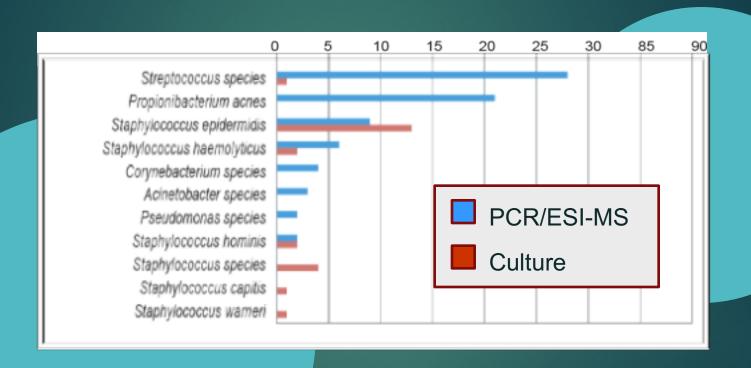
Independent case review

- A panel of 3 doctors, independent of the trial, reviewed results
- Asked to comment if the PCR/ESI-MS results would alter antibiotic prescription if they had known about the result
- > 442 summaries reviewed
- ► 42% of the time the PCR/ESI-MS result would have affected their decision
- Rising to 57% if the PCR/ESI-MS result was positive

Final thoughts

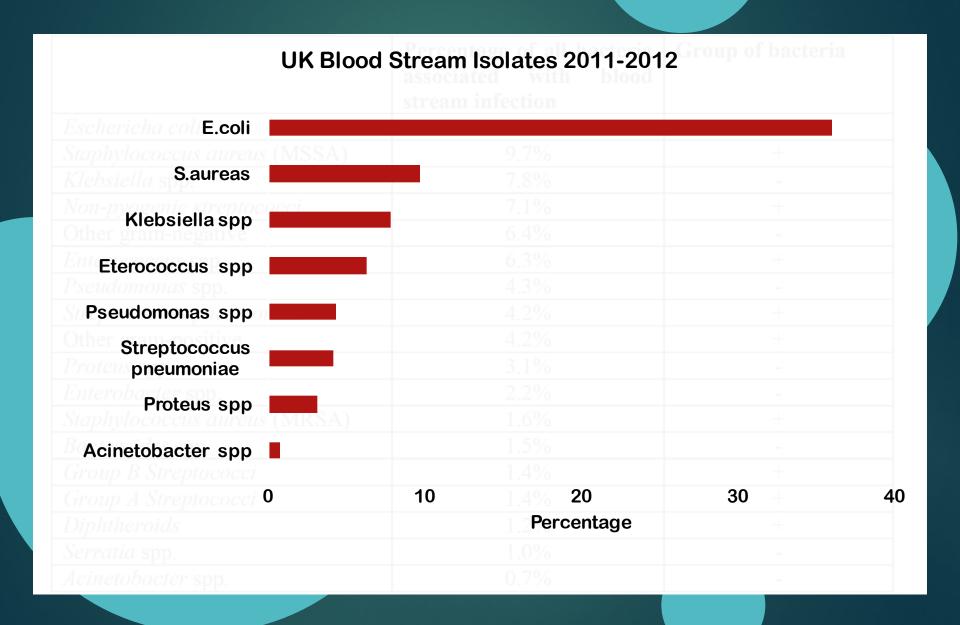
If implemented carefully, these devices may revolutionise the way we manage infection and sepsis in a way we have not seen for decades

КІНЕЦЬ (The End)


Of the 185 respiratory samples...

	Culture	PCR/ESI-MS	
Positive	81 (44%)	(63%)	
Negative	104 (56%)	68 (37%)	

Performance		Culture	
		Positive	Negative
PCR/ESI- MS	Positive	68 (37%)	49 (26%)
	Negative	13 (7%)	55 (30%)


Negative predictive value of 81%

Where is the Staph. Epi?

Presumed contaminants (excluded from analysis)

UK Blood Stream Isolates 11-12

Samples taken

- Simultaneous samples for PCR/ESI-MS paired with:
 - Blood culture
 - ▶ BAL or endotracheal aspirate
 - Fluid from other sterile body cavities
 - **▶** CSF
 - ▶ Pleural
 - **▶** Ascitic
 - Excluding urine, sputum and faeces
- PCR/ESI-MS samples were frozen and batch analysed
- Clinicians blinded to result

8 European Centres

- University College London Hospitals, London
- Barts Health, London
- Hospital Erasme, Brussels
- Hôpitaux Universitaire Genève
- Hôpital Militaire du Val de Grace, Paris
- ► Child of Christ Hospital, Warsaw
- Universitätsklinikum Frankfurt
- Hôpital St Louis, Paris

Results

- ▶ 543 patients recruited 529 included in analysis
- >900 samples taken
 - ► 625 blood samples
 - 88 broncho alveolar lavages
 - ▶ 96 tracheal aspirates
 - **▶ 11 CSFs**
 - ▶ 36 intra-peritoneal fluid
 - ▶ 14 pleural fluid
 - ▶ 13 tissue
 - > 37 other samples

Characteristics

- ▶ Age 60.4 ± 18.8 years
- Gender
 - ► Male 61.2%
 - **▶** Female 38.8%
- Source of ICU admission
 - **Emergency Department 32%**
 - **▶** Ward 25%
 - ► Theatres 16%
- ▶ Immune status
 - ► Competent 83.4%
 - ► Incompetent 16.6%
- Antibiotics
 - Started following enrolment 22.1%
 - ► Within the last 30 days 75.4%
- ► SOFA
 - > 7.9 ± 4