Pitfalls of using Minimally Invasive Cardiac Output Monitoring in the Operating Room

Lester AH Critchley, MD, FFARCSI, FHKAM

Professor, Honorary Consultant and Specialist Anaesthetist
Prince of Wales Hospital
Minimally Invasive Cardiac Output Monitoring

Pulse Contour
FloTrac, LiDCO, PiCCO

BioImpedance
NICOM Cheetah, PhysioFlow

Doppler (Ext. & Oesoph.)
USCOM, CardioQ
Ideal MICOM does not exist

Convenient
Reliable
Easy to use
Low cost
Probably need a selection of MICOMs: And choose the best one(s) for each case

PhysioFlow / USCOM / CardioQ
Focus on USCOM:

- Because MICOM I use most
- Set up in < 5min
 - Used at point of care
- Easy to use:
 - Probe application simple
 - Scanning – time to learn
- Minimal cost:
 - Permanent probe
 - Do need acoustic gel
- Readings trustworthy?
Hand held USCOM probe with acoustic gel applied to the head.
When should I use the USCOM?

Planned use
- Colorectal & GDFT
- ASA3 - CV disease
- Research cases

Unexpected problem
- Unexplained ↓BP
- Excessive blood loss
Planned Use of USCOM: How is it used?

1. Turn On
 - Battery or Mains supply

2. Boot Up system
 - Create new patient file
 - Calibrate – patient data

3. Ready to scan

4. Focus probe beam
Aortic Valve

Pulmonary Valve

Ventilation Inspiration Beam occluded by lungs
Beam direction and route: Aortic Valve
Scanning the Aortic Valve: For optimum signal

SHOW VIDEO OF USCOM BEING USED
How reliable is my scan data?

Two important issues

Correct flow profile
Where is the signal origin?

Quality of the signal
Which signal is correct?
CAN I OBJECTIVELY ASSESS THE USCOM SIGNAL?

<table>
<thead>
<tr>
<th>Quality</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>very reliable</td>
</tr>
<tr>
<td>Good</td>
<td>reliable</td>
</tr>
<tr>
<td>Fair</td>
<td>acceptable</td>
</tr>
<tr>
<td>Poor</td>
<td>reject</td>
</tr>
</tbody>
</table>
Objective assessment of signal quality?

12-point assessment score (>5/12)

<table>
<thead>
<tr>
<th>Criterion</th>
<th>2 points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upstroke</td>
<td>Well-defined on all 3 peaks</td>
</tr>
<tr>
<td>Downstroke</td>
<td>Well-defined on all 3 peaks</td>
</tr>
<tr>
<td>Apex</td>
<td>Well-defined on all 3 peaks</td>
</tr>
<tr>
<td>Area</td>
<td>Entire area is shaded blue</td>
</tr>
<tr>
<td>A valve opening</td>
<td>-</td>
</tr>
<tr>
<td>A valve closing</td>
<td>-</td>
</tr>
<tr>
<td>E or A wave</td>
<td>-</td>
</tr>
<tr>
<td>Baseline</td>
<td>-</td>
</tr>
</tbody>
</table>

Study to determine the repeatability of supra-sternal Doppler (ultrasound cardiac output monitor) during general anaesthesia: effects of scan quality, flow volume, and increasing age

Coefficient of variation (CV) of 6 (six) serial USCOM scan readings used.

The lower the CV % the better the repeatability of the readings, where <5-10% is clinically acceptable.

N = 180 patients
What factors effect my ability to find and insonate the aortic valve flow?

- Ability to insert probe into sternal notch
 - Prominent trachea
- Aging
 - Unfolding and calcification of the aorta
- Low cardiac output
 - Doppler signal is weak
Effect of Age on signal quality

![Graph showing the effect of age on ability to use the USCOM. The x-axis represents patient's age (years) ranging from 0 to 100, and the y-axis represents Cattermole score ranging from 0 to 12. The graph includes a dashed line indicating USCOM unreliable below this line (Cattermole) and another dashed line indicating USCOM readings still accepted.]

- USCOM unreliable below this line (Cattermole)
- USCOM readings still accepted
Correlation between supra-sternal Doppler cardiac output (USCOM) measurements and chest radiological features

L. Huang,¹ L. A. H. Critchley,² R. L. K. Lok³ and Y. Liu⁴
Age related changes in the aorta: bigger, longer & more tortuous → Calibration
COMPARED TO OTHER METHODS USCOM REQUIRES TRAINING & USER SKILL

DISINCENTIVE TO ACCEPT TECHNOLOGY
How do I use USCOM to assess trends and perform goal directed fluid therapy?

- Compare numerical readings
- Compare scans before and after IV fluid bolus
- Time plots of SV and CO
Before volume expansion

After volume expansion - volvulyte 250 ml
USCOM trend plots
Can I trust the changes in CO? Are they reliable?

DOPPLER
- Direct flow measurement
- Quality of scan critical
- Angle of insonation:
 - USCOM (in line of flow)
 - CardioQ (45 degrees)

PULSE CONTOUR ANALYSIS
- Indirect measurement
 - Pressure converted to Flow
 - Effected by other factors i.e. peripheral resistance!
Can I trust the changes in CO? Are they reliable?

- **BIOIMPEDANCE**
 - Direct or Indirect measurement?

- Still not determined what is being measured
 - i.e. the underlying bio-electric principle behind impedance signal

- Probably:
 - Mass movement of blood within an electric field
 - The flux of alternating current passing across the heart and great blood vessels.
 - Therefore is a **direct** measurement of blood flow!
How does CardioQ compare to USCOM?

- **Continuous readings:**
 - Used as monitor intra-op.

- **Still have to:**
 - Save profiles (limited!)
 - Focus probe

- **Reading vary with:**
 - Probe depth
The effect of aorta unfolding and remodelling on oesophageal Doppler readings as probe depth is varied

J. Zhang¹, L. A. H. Critchley²,* and L. Huang²
How can I verify my USCOM data?

- Compare to other methods:
 - USCOM pulmonary valve
 - CardioQ
Dual Doppler reference method:

Using USCOM and CardioQ together

- USCOM plus CardioQ
 - Alternative to PAC – TD

- Time plots showed good tracking ability across a wide range of CO in most patients.

- Correlation between the two devices was excellent in 14 patients (R² >0.85), good in another four (R² >0.64) and poor in two (N=20).

- Used Dual Doppler to assess the NICOM Cheetah.

Unplanned use to diagnose the haemodynamic status: i.e. Low BP

\[\text{BP} = \text{CO} \times \text{SVR} \]

\[\text{CO} = \text{SV} \times \text{HR} \]
Ectopic pregnancy: Low BP with Tachycardia?

- USCOM CO = 10 L/min
- Haemoglobin = 4 g/dl
- Viscosity / SVR problem NOT hypovolaemia
- Rather than more IV fluids gave red blood cells
Does USCOM harm the patient?

The USCOM Kiss
Main points about PhysioFlow

• **BiolImpedance technology**
 – Safe, simple & cost effective
 – Continuous data
 – Susceptible diathermy but not movement

• **Electrodes and their positioning critical**
 – Posterior lower chest leads
 – Low impedance

• **Provides visual waveforms assessment**
 – Waveform morphology
F/56, ASA 1, Open resection bowel tumour: Comparison of PhysioFlow to Doppler
Electrode positioning for PhysioFlow: Anteriolateral vs. Posterior

Learning points:
- Changed to posterior back leads
- Value of a reference trend-line
- Importance of looking beyond just the numerical readings
F/35, ASA I, Lap. Re-implant Ureter

Cardiac output comparisons over time

In some cases the PhysioFlow readings drift downwards (become lower) making the readings unreliable. Currently investigating the cause.